

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) WIPO PCT INVESTOR IN PROS

The Patent Office Concept House Cardiff Road Newport South Wales

NP10 8QQ

9-69-82

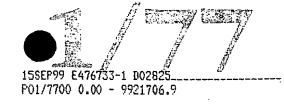
10/088452

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.


Signed

Dated 26 September 2000

This Page Blank (uspto)

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to belp you fill in this form) The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1. Your reference

100295/JPR/DG

2.

9921706.9

14 SEP 1999

 Full name, address and postcode of the or of each applicant (underline all surnames)

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

NOKIA TELECOMMUNICATIONS OY KEILALAHDENTIE 4 02150 ESPOO FINLAND

6208193006

. Title of the invention

RELOCATION IN A COMMUNICATION SYSTEM

5. Name of your agent (if you bave one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

PAGE WHITE & FARRER 54 DOUGHTY STREET LONDON WC1N 2LS

Patents ADP number (if you know it)

1255003

FINLAND

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (If you know it) the or each application number

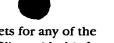
Country

Priority application number (if you know it)

Date of filing
(day / month / year)

 If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application Number of earlier application

Date of filing (day / month / year)


8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

a) any applicant named in part 3 is not an inventor, or

- b) there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body. See note (d))

YES

Patents Form 1/77 9. Enter the number of sheets for any of the following items you are filing with this form.

Do not count copies of the same document Continuation sheets of this form

Description

Claim(s) Abstract

6

Drawing(s)

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

> Any other documents (please specify)

> > I/We request the grant of a patent on the basis of this application.

Signature

14.09.1999

12. Name and daytime telephone number of person to contact in the United Kingdom

JUKKA-PEKKA RUUSKANEN - 0171 831 7929

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to probibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

Relocation in a communication system

Field of the Invention

The present invention relates to relocation in a communication system and in particular, but not exclusively, to relocation of a protocol termination point.

Background of the Invention

10

15

20

25

30

Communication networks typically operate in accordance with a given standard which sets out what the elements of the network are permitted to do and how that should be achieved. The communication in the networks follows predefined rules which are referred to in the following as protocols. The protocols to be used are defined in the associated standard. The protocols can be used for controlling various events and functionalities in a connection provided through the communications network. Several protocols may be simultaneously in an active state for providing control of a connection. During an ongoing i.e. active connection a protocol is having a termination point in the network element controlling the connection. For example, a protocol may have termination points in a telephone terminal and in a network controller controlling the connection.

A communication network is a cellular radio network consisting of cells. In most cases the cell can be defined as a certain area covered by one or several base transceiver stations (BTS) serving mobile stations (MS) via a radio interface and connected to a base station subsystem (BSS). Several cells cover a larger area, and form the coverage area of a cellular

10

15

radio network. The cell (or group of cells) and thus the mobile station (MS) or similar user equipment (UE) within one of the cells of the system can be controlled by a node providing controller functionality, for example by a radio network controller (RNC) or a mobile switching center (MSC). 5 The controller can be connected further to a gateway or linking node, for example a gateway GPRS support node (GGSN) or gateway mobile switching center (GSMC), linking the cell to the other parts of the communication system and/or other communication networks, such as to a PSTN (Public Switched Telecommunications Network) or to a data network, such as to a X.25 based network or to a TCP/IP (Transmission Control Protocol/Internet Protocol) based network.

The mobile station MS may be controlled by only one controller at time. However, the MS may also be simultaneously controlled by several controller nodes. This may occur e.g. when the cells overlap or in so called soft handoff mode, where the MS may be in communication with two base stations and those base stations may be connected to different controllers, or when 20 one controller is controlling another controller controlling the MS. One controller of the plurality of controllers in the system can be defined as a serving (main) controller whereas the others may act as secondary controllers. The responsibility of controlling a connection between the mobile 25 station and the network may change during an ongoing connection. It is therefore necessary to relocate at least part of functionalities associated with the connection such that the connection will not become disconnected an/or that the quality of the connection remains in an acceptable level. 30 It is to be appreciated that in addition or as an alternative to relocating functionalities of the controller node, the

to manage.

functionality to be relocated may also be located in any other of the network elements, for example in the base station, base station subsystem, in the gateway and so on.

When relocation is decided to be performed, the serving controller or another node of the communication system may initiate the necessary proceeding for replacing one or several of the network nodes with a new corresponding node or nodes.

In case of an active i.e. ongoing connection, one of the 10 features that should to be relocated is the state of a protocol termination point. Although it is not always necessary, in a usual case the status of the protocol termination point at the new "replacing" network element or node should be such that it may take over the functions of the 15 old "replaced" network node. At the present the parameters which need to be transferred have to be defined also in the protocols which are used to convey the information from the old termination point to the new termination point. For example, if parameters of a Radio Resource Control (RRC) or 20 Medium Access Control (MAC) or Radio Link Control (RLC) protocols are to be relocated in a system that would use radio network subsystem application part (RNSAP) for communication between the network controller nodes, this would mean that a lot of "external" parameters would have to be defined for the 25 RNSAP. This would increase the complexity of the RNSAP. In addition, if several additional parameters of a protocol are to be defined for the another protocol, it makes these two different protocols very dependent on each other. The independent evolution of them would thus become more difficult 30

Summary of the Invention

It is an aim of the embodiment of the present invention to address one or several of the above problems.

5

According to one aspect of the present invention, there is provided a method in a communication system for relocating a protocol termination point, comprising:

defining a protocol initialization unit containing

10 predefined information of a first termination point of a first protocol by the first protocol;

transferring the protocol initialization unit from the first termination point to a second termination point by a second protocol; and

initializing the second termination point based on the protocol initialization unit.

According to another aspect of the present invention there is provided a communication system, comprising:

20

a first protocol termination point;

a second protocol termination point;

control means for relocating a first protocol from the first protocol termination point to the second protocol termination point, said control means being arranged to form a protocol initialization unit containing predefined information of the first protocol at the first protocol termination point;

communication path based on a second protocol between the first and the second termination points for transferring the protocol initialization unit; and

30 control means for initializing the second protocol termination point based on the protocol initialization unit. According to a still another aspect of the present invention there is provided a network element for use in a communication network, comprising:

a protocol termination point;

control means for relocating a first protocol from the protocol termination point to another protocol termination point, said control means being arranged to form a protocol initialization unit containing predefined information of the first protocol at the protocol termination point; and

interface to said other protocol termination point based on a second protocol for transferring the protocol initialization unit from the first termination point by means of the second protocol.

15 According to a still another aspect of the present invention there is provided a network element for use in a communication network, comprising:

a protocol termination point of a first protocol; interface to another protocol termination point for receiving a protocol initialization unit containing predefined information of the first protocol at said other termination point, wherein the interface is based on a second protocol; and

control means for initializing the protocol termination point based on the received protocol initialization unit.

According to a more specific embodiment, the protocol initialization unit may contain state information of the first protocol termination point.

30

25

20

The first termination point may also be located at a first network element of the communication system and the second

termination point may be located at a second network element of the communication system. The second network element may, upon receiving the protocol information unit, generate and transmit a response to the first network element by means of the second protocol.

The protocol initialization unit may be encapsulated in a message transmitted between the first termination point and the second termination point. The protocol initialization unit may also be transparent for the second protocol.

The protocol initialization unit may be transmitted via a network element of a core network of the communication system. This may be accomplished by means of a radio access network application part (RANAP) protocol. According to an embodiment, 15 the protocol initialization unit may be transmitted directly between the termination points. This may be accomplished by means of a radio network subsystem application part (RNSAP) protocol.

20

10

The protocol initialization unit may contain information of at least one further protocol. According to an embodiment at least one further protocol initialization unit may be defined containing predefined information of a further protocol by the further protocol, whereafter the further protocol 25 initialization unit is transferred from the first termination point to the second termination point. The further protocol initialization unit may be transferred between the termination points by a protocol that is different to the second protocol.

30

The parameters of the second termination point may be set into a state that is relatively similar to the state of parameters

of the first termination point before or at the time the relocation procedure was initiated during the initialization procedure.

The embodiments of the invention provide several advantages.

One of the benefits is that a need for defining a great number of parameters of one protocol in another protocol is avoided. This provides clear benefits in updating and maintenance of the protocols.

10

15

Brief Description of Drawings

For better understanding of the present invention, reference will now be made by way of example to the accompanying drawings in which:

Figure 1 shows a schematic diagram of a cellular radio network system in which embodiments of the invention can be implemented;

Figure 2 shows the hierarchy of various elements of the 20 network of Figure 1;

Figure 3 shows two possible interfaces between network nodes; and

Figure 4 is a flow chart for operation in accordance with one embodiment.

25

30

Description of Preferred Embodiments of the Invention

Reference will be first made to Figure 1 in which three cells 1,2,3 of a cellular telecommunications network are shown. Each cell 1,2,3 is served by a respective base transceiver station (BTS) 4',4,5. Each base transceiver station (BTS) is arranged to transmit signals to and receive signals from the mobile

stations (MS) 6 located in the cell associated with the given base transceiver station. Likewise, each mobile station 6 is able to transmit signals to and receive signals from the respective base transceiver station 4',4,5, and also able to move from the coverage area of one cell to the coverage area of another cell, e.g. from cell 2 to cell 3.

The exemplifying cellular telecommunications network will be described in more detail in the following by using the terminology of a proposed Universal Mobile Telecommunications System (UMTS) standard. However, it is to be appreciated that the invention is not restricted to UMTS but can be implemented in any standard. Examples of these include, without any intention to restrict the possible communication systems to these, any of the code division multiple access (CDMA) based systems or any of the time division multiple access (TDMA) based systems or any of the frequency division multiple access (FDMA) based systems or any hybrids thereof.

Reference is now made to Figure 2 which shows the hierarchy of a cellular communication system. As can be seen, the mobile station 6 is in wireless communication with one of the base stations. Typically a number of mobile stations will be in communication with each base station although only one mobile station is shown in Figure 2 for clarity. A first base station 4 is connected to a first network controller, which in Figure 2 is a serving radio network controller SRNC 10. Again, more than one base station is usually connected to each controller 10 although only one is shown for clarity. Typically more than one controller is also provided in a network. The SRNC 10 is connected to other elements of the network 12 via a suitable

linking or gateway apparatus, such as a serving GPRS (General Packet radio Service) Support Node (SGSN) 14.

The SRNC 10 is arranged to control the base station, either directly or through an intermediate node (not shown). The controller 10 passes on data to be transmitted to the mobile station by the base station. The controller 10 will also receive from the base station data which the base station has received from the mobile station. The implementation of the communication between the base station, the mobile station and the controller is known, and will thus not be discussed in detail herein. It is sufficient to note that the interface may comprise channels in both uplink and downlink directions. The data may be sent between the mobile station and the controller in any suitable format. The messages sent from the mobile stations may include information identifying the mobile station (for instance, MS ID and/or IMSI (Mobile Station Identity and/or International Mobile Subscriber Identity, respectively)).

20

25

10

15

In addition to the serving controller (RNC 10), the cellular telecommunications system of Figure 2 includes another controller RNC 11 controlling the base station 5 of cell 3 of Figure 2. It is, again, noted that the second controller may also control more than one base station. The second controller may also sometimes be referred to as a drift controller (DRNC). The SNRC 10 and DRNC 11 may communicate with each other over an open Iur interface 18 established between them.

Figure 2 illustrates one possible relocation situation wherein the mobile station MS 6 or similar user equipment communicates firstly via the BTS 4 over a radio interface designated by a

solid line and then switches to communicate via a new BTS 5, as designated by the dashed radio interface. According to one possibility the change from one base station to another may occur after the mobile station 6 has moved into the service or illumination area of the second base station 5. However, it is to be appreciated that in addition to the movement of the mobile station, there are also other possible reasons for triggering the relocation of the connection to another base station or to another network element, such as network optimization, load balancing, hardware congestion, connection quality improvement, fault in the system or base station and so on.

In order to ensure a proper operation of the system and to

avoid disconnecting a possibly ongoing call, at least some of
the functionalities of the network elements have to be
relocated for the connection. For example, when a SRNC
functionality is to be located from a first RNC to a second
RNC some protocol termination points of an ongoing connection

(such as RRC, RCL and/or MAC protocols) need to be changed
from the first RNC to the second RNC.

Before explaining an embodiment for the relocation in more detail, a brief explanation will given of the protocol

25 termination point with reference to Figure 3 showing a block diagram of the source RNC 10 and the target RNC 11. The exemplifying protocol termination point is illustrated to comprise a radio resource control (RRC) protocol. However, it is to be appreciated that the described RRC protocol is only an example, and that the embodiments can be implemented for any other protocol used for a connection in a communication system as well. These other protocols include, without any

restriction to these, medium access control (MAC) protocol, radio link control (RLC) protocol and packet data convergence protocol (PDCP).

The SRNC 10 and DRNC 11 each are provided with a Radio 5 Resource Controller functionality RRC 24 and 26, respectively. When the MS 6 is communication with the controller 10, the RRC protocol has its other termination point correspondingly at the controller 10, while the other termination point is at the mobile station. However, should the controller change, the 10 termination point of the RRC protocol should also be changed correspondingly. More precisely, the new controller 11 should be provided with a similar termination point functionality using similar parameters as the previous controller had. These functionalities will be controlled by a control unit 20 at the 15 source controller 10 and by a control unit 21 at the target controller 11.

Figure 3 shows further an Iur interface 18 between the DRNC 10
20 and the SRNC 11. For example, a RNSAP (Radio Network Subsystem Application Part) protocol can be used for the direct signalling between the two RNCs. A RANAP (Radio Access Network Application Part; in the control plane) protocol can used for L3 (Layer 3) signalling over the Iu interface between the RNCs and an appropriate element 14 of the core network 14. The core network element 14 can be e.g. a mobile switching center or a serving GPRS support node.

A reference will now be made to the flow chart of Figure 4

30 showing in more detail an embodiment for moving the required state information of a protocol termination point from one termination point at a first network element (NE) to another

termination in a second network element. As illustrated by step 30, the protocol termination point is to be moved between the termination points during an active state of the protocol between the servicing network controller and the mobile station. After the relocation procedures are initiated at step 5 32, the "old" protocol termination point in the source network element produces at step 34 a special protocol data unit (PDU) containing predefined necessary protocol parameters for initialization of the second termination point before relocation of the connection. The PDU is passed at step 36 to 10 the new termination point with help of a second protocol. The second protocol is used for signaling between the different network elements or nodes. The passed information can be transparent to the second protocol used for the transmission of the PDU. Examples of the protocols which may be used for 15 the transmission of the PDU will be discussed in more detail later in this specification. The new termination point receives the PDU and it is initialized at step 38 based on the information received from the old termination point. After the initialization procedure the termination point will be 20 relocated at step 40 to the new network element and the operation of the system continues as before except that the protocol termination point of the active protocol is now situated in the new network element.

25

In other words, an explicit protocol message will be passed between the old termination point and the new termination point of a protocol in case of relocation of the protocol termination point. The specified PDU (or message) is used within a protocol peer between the old and the new termination point of the protocol. In a preferred embodiment a single protocol defines the information to be transferred between the

5

10

15

protocol peers and the information to be transmitted within one peer. By means of this it is possible to avoid a need for defining a great number of parameters of one protocol in another protocol. For example, by the embodiment described in the following about 100 RRC parameters in the RANAP protocol are avoided.

Referring again to Figure 3, a more detailed example of the relocation procedure will now be given in context of relocating a radio interface L3 protocol (i.e. a radio resource control; RRC) protocol from a first or source controller (e.g. RNC 10 of Figure 3) to a second or target controller (e.g. RNC 11 of Figure 3). The exemplifying RRC protocol is known, and is not described in more detail. It is sufficient to note that the RRC provides common controlling and signaling over the air interface between the serving RNC and the mobile station and that the RRC can be shared with circuit switched traffic and packet switched traffic.

The control unit 20 of the first (source) RNC 10 produces the special protocol initialization unit which in this instance will be referred to as a RRC PDU. The RRC PDU contains all such predefined RRC parameters that have to be known by the new termination point in order to receive and continue the connection. These parameters may include information concerning e.g. one or several of the following: radio bearer(s), transport channel(s), radio link(s) and their physical channels, capability information as well as user equipment capabilities and measurements being reported by the user equipment and so on. According to a preferred embodiment the RRC PDU contains all such RRC parameters that are required by the termination point at the target RNC to start the RRC

protocol in a relatively similar state and conditions that existed in the old termination point.

According to an embodiment the generated RRC PDU can be transferred from the first RNC to the second RNC by means of a RNSAP (Radio Network Subsystem Application Part) over an open interface Iur 18 provided between the first controller 10 and the second controller 11. The termination point at the second RNC receives the RRC PDU and subsequently decodes the received RRC PDU. The termination point 26 is initialized based on the received and decoded information. The initialization procedure can be controlled by the control unit 21.

According to another embodiment the PDU is firstly moved from the source RNC 10 to the core network (CN) 14 over an Iu interface 19 by a RANAP (Radio Access Network Application Part) message 'RELOCATION REQUIRED' and subsequently from the core network to the target RNC 11 by an Iu RANAP message 'RELOCATION REQUEST'.

20

25

10

15

The RRC PDU can be encapsulated within a message in the second protocol as there is no need for the contents of the RRC PDU to be visible for the functionality of the second protocol, such as to the RANAP or the RNSAP. The encapsulation of protocol messages transparently to a message of another protocol is a known technique and will thus not be discussed in more detail herein

It should be appreciated that the status of any other

30 protocol, such as the MAC protocol or RLC protocol referred to above, could also be conveyed by the RRC protocol. In more general terms, a protocol may "collect" required information

for several protocols and generate a PDU containing required information for all or at least more than one of the protocols to be relocated. According to an embodiment a separate or further protocol initialization unit PDU is used for each of the protocols to be relocated or at least some of the protocols to be relocated. The different protocol initialization units can be transferred between the termination point by protocols that are different to each other.

10

15

It should also be appreciated that some embodiments do not require an identical or relatively similar protocol termination point at the old and the new network element. However, it is preferred that the information included in the protocol initialization unit is such that that the functionalities of the communication system may continue without disconnecting the user equipment from the communication system.

20 According to one possibility the termination point is not relocated from a network element or node to another node but within the node.

It is noted that in some embodiments of the invention, the

relocation of some or all functionalities may also be
triggered even in such conditions where the communication
could continue without any relocation proceedings, e.g. in
order to optimize the operation of the system or balance the
load distribution in the system. In addition, the mobile

station 6 of Figure 2 may be in communication with both
controllers 10 and 11. Furthermore, it may not be necessary to
relocate the entire protocol or all protocols used for a

connection, but instead only a part of the information concerning the protocols is transmitted between the network elements. For example, a user plane communication may be enabled via the Iur interface 18 of Figure 2, whereby the mobile station 6 within the service area of the controller 11 could still be controlled by the old servicing controller 10 via the controller 11.

According to a further embodiment the initialization is a bi-10 directional process. In other words, instead of only transmitting information from the first network element (node) to the second element, the new network element may send a respond to the first element or accomplish a transmission to a further network element. The respond may include a message such as "unable to initialize", "overload", "all parameters 15 not received" and so on. Upon receiving the response, the first network element may modify its state and/or take some other actions towards the new termination point. For example, transmit modified parameter or parameters, or use different transmission route, or try to relocate the connection to 20 another network element.

It should also be appreciated that whilst embodiments of the present invention have been described in relation to a connection between the network nodes and a mobile station, embodiments of the present invention are applicable to any other suitable type of connections terminating to one node. It should also be appreciated that base stations can sometimes be referred to as node B.

30

25

There are also other possible reasons for initiating the relocation procedure that movement of the mobile station into a new service area. For example, the network element in

question may become overloaded or a failure in the system of the network element itself may force the system to relocate at least a part of the functionalities, network optimization, load balancing and so on.

5

The exemplifying embodiments of the invention have discussed protocols terminated to a network controller. Embodiments of the present invention can be applicable to other network elements as well where applicable.

10

15

It is also noted herein that while the above describes one exemplifying embodiment of the invention, there are several variations and modifications which may be made to the disclosed solution without departing from the scope of the present invention as defined in the appended claims.

Claims

10

1. A method in a communication system for relocating a protocol termination point, comprising:

defining a protocol initialization unit containing predefined information of a first termination point of a first protocol by the first protocol;

transferring the protocol initialization unit from the first termination point to a second termination point by a second protocol; and

initializing the second termination point based on the protocol initialization unit.

- A method according to claim 1, wherein the protocol
 initialization unit contains state information of the first protocol termination point.
- 3. A method according to claim 1 or 2, wherein the first termination point is located at a first network element of the communication system and the second termination point is located at a second network element of the communication system.
- 4. A method according to claim 3, wherein the second network 25 element, upon receiving the protocol information unit, generates and transmits a response to the first network element by means of the second protocol.
- 5. A method according to any of the preceding claims,
 30 wherein the protocol initialization unit is encapsulated in a message transmitted between the first termination point and the second termination point by the second protocol.

5

25

- 6. A method according to any of the preceding claims, wherein the protocol initialization unit is transparent for the second protocol.
- 7. A method according to any of the preceding claims, wherein the protocol initialization unit is transmitted via a third network element between the termination points.
- 10 8. A method according to claim 7, wherein the transmission is based on a radio access network application part (RANAP) protocol.
- 9. A method according to any of claims 1 to 6, wherein the protocol initialization unit is transmitted by a direct connection between the termination points.
- 10. A method according to claim 9, wherein the transmission is based on a radio network subsystem application part (RNSAP) protocol.
 - 11. A method according to any of the preceding claims, wherein the predefined information of the first protocol comprise one or several parameters of a radio resource control protocol (RRC), medium access control protocol (MAC), radio link control protocol (RLC), and/or packet data convergence protocol (PDCP).
- 12. A method according to any of the preceding claims,
 30 wherein the protocol initialization unit contains information of at least one further protocol.

5

13. A method according to any of the preceding claims, comprising steps of:

defining at least one further protocol initialization unit containing predefined information of a further protocol by the further protocol; and

transferring the further protocol initialization unit from the first termination point to the second termination point.

- 10 14. A method according to claim 13, wherein the further protocol initialization unit is transferred between the termination points by a protocol that is different to the second protocol.
- 15 15. A method according to any of the preceding claims, wherein at least one of the termination points is located at one of the following: a base station controller, a radio network controller, a base station, a gateway.
- 20 16. A method according to any of the preceding claims, wherein the step of initializing the second termination point comprises setting the parameters of the second termination point into a state that is similar to the parameters of the first termination point before or at the time the relocation procedure was initiated.
 - 17. A communication system, comprising:
 - a first protocol termination point;
 - a second protocol termination point;
- control means for relocating a first protocol from the first protocol termination point to the second protocol termination point, said control means being arranged to form a

protocol initialization unit containing predefined information of the first protocol at the first protocol termination point;

communication path based on a second protocol between the first and the second termination points for transferring the protocol initialization unit; and

control means for initializing the second protocol termination point based on the protocol initialization unit.

- 18. A communication system according to claim 17, wherein the protocol initialization unit contains state information of the first protocol termination point.
- 19. A communication system according to claim 17 or 18, wherein the control means for relocating are arranged to encapsulate the protocol initialization unit into a message to be transmitted from the first termination point to the second termination point.
- 20. A communication system according to any of claims 17 to 19, wherein the first termination point is located at a first network element of the communication system and the control means for relocating are arranged in connection with the first network element.
- 25 21. A communication system according to any of claims 17 to 20, wherein the second termination point is located at a second network element of the communication system and the control means for initializing are arranged in connection with the second network element.

10

20

- 22. A communication system according to any of the claims 17 to 21, wherein the protocol initialization unit contains information of at least one further protocol.
- 5 23. A network element for use in a communication network, comprising:

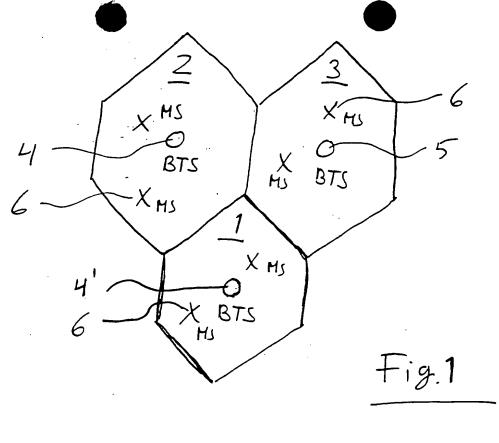
a protocol termination point;

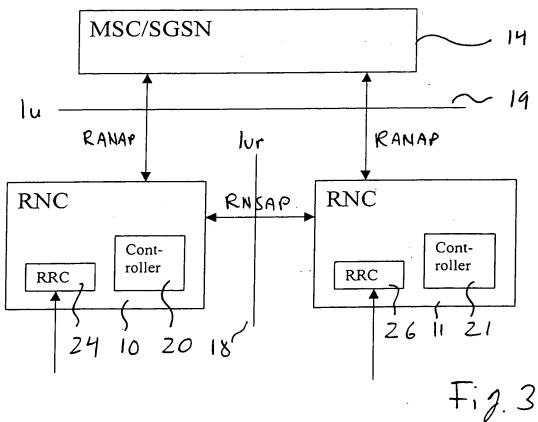
control means for relocating a first protocol from the protocol termination point to another protocol termination point, said control means being arranged to form a protocol initialization unit containing predefined information of the first protocol at the protocol termination point; and

interface to said other protocol termination point based on a second protocol for transferring the protocol

- 15 initialization unit from the first termination point by means of the second protocol.
 - 24. A network element according to claim 23, wherein the network element comprises a controller of a cellular communication network.
- 25. A network element according to claim 23 or 24, wherein the control means for relocating are arranged to encapsulate the protocol initialization unit into a message to be transmitted from the first termination point by means of the second protocol.
- 26. A network element according to any of claims 23 to 25, wherein the protocol initialization unit contains information30 of at least one further protocol.

10


27. A network element for use in a communication network, comprising:


a protocol termination point of a first protocol; interface to another protocol termination point for receiving a protocol initialization unit containing predefined information of the first protocol at said other termination point, wherein the interface is based on a second protocol; and

control means for initializing the protocol termination point based on the received protocol initialization unit.

28. A network element according to claim 27, wherein the network element comprises a controller of a cellular communication network.

This Page Blank (uspto)

This Page Blank (uspio)

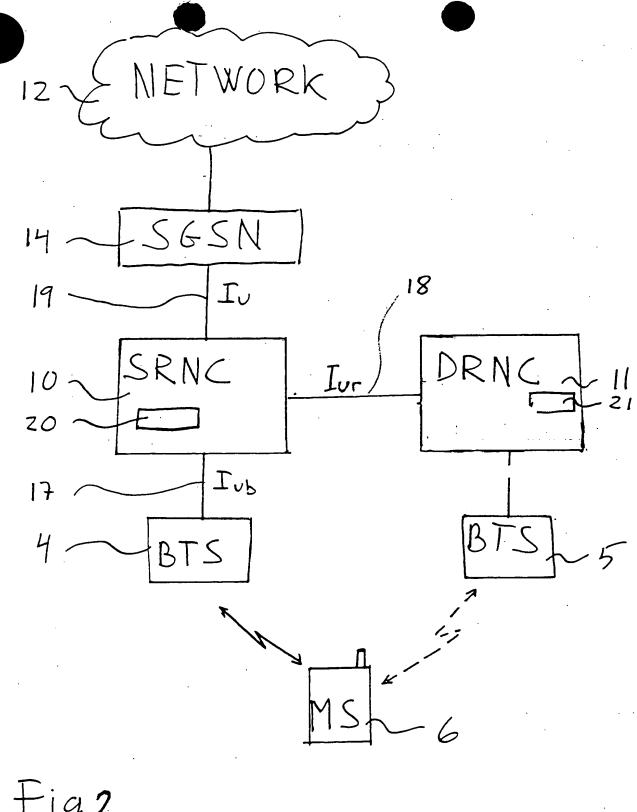


Fig.2

This Page Blank (uspto)

A protocol having a termination point in a first NE is an active state Termination point relocation procedure initiated at the first NE An initialization PDU formed in the first NE by the protocol termination point The PDU is passed to a new termination point in another network element by means of at least one 136 other protocol The new termination point initializes itself based on the received PDU The operation of the first NE is relocated in the new NE

Fig. 4

This Page Blank (uspto)